Kinetics of Na(+) transport in necturus proximal tubule

نویسندگان

  • KR Spring
  • G Giebisch
چکیده

The dependence of proximal tubular sodium and fluid readsorption on the Na(+) concentration of the luminal and peritubular fluid was studied in the perfused necturus kidney. Fluid droplets, separated by oil from the tubular contents and identical in composition to the vascular perfusate, were introduced into proximal tubules, reaspirated, and analyzed for Na(+) and [(14)C]mannitol. In addition, fluid transport was measured in short-circuited fluid samples by observing the rate of change in length of the split droplets in the tubular lumen. Both reabsorptive fluid and calculated Na fluxes were simple, storable functions of the perfusate Na(+) concentration (K(m) = 35-39 mM/liter, V(max) = 1.37 control value). Intracellular Na(+), determined by tissue analysis, and open-circuit transepithelial electrical potential differences were also saturable functions of extracellular Na(+). In contrast, net reabsorptive fluid and Na(+) fluxes were linearly dependent on intracellular Na(+) and showed no saturation, even at sharply elevated cellular sodium concentrations. These concentrations were achieved by addition of amphotericin B to the luminal perfusate, a maneuver which increased the rate of Na(+) entry into the tubule cells and caused a proportionate rise in net Na(+) flux. It is concluded that active peritubular sodium transport in proximal tubule cells of necturus is normally unsaturated and remains so even after amphotericin-induced enhancement of luminal Na(+) entry. Transepithelial movement of NaCl may be described by a model with a saturable luminal entry step of Na(+) or NaCl into the cell and a second, unsaturated active transport step of Na(+) across the peritubular cell boundary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule.

The magnitude of changes in luminal hydrostatic pressure (DeltaP(L)), peritubular capillary hydrostatic pressure (DeltaP(PT)), and peritubular capillary colloid osmotic pressure (Deltapi) was determined in the Necturus kidney during volume expansion (VE). The specific effects of separate changes of each pressure parameter on proximal net sodium transport (J(Na)) were studied in isolated perfuse...

متن کامل

Ion and Water Transport in the Proximal Tubules of the Kidney of Necturus maculosus

The nature of the transport of ions and water in the proximal tubule of the kidney has been a subject of extraordinary interest for a long time. In the mammalian kidney, 80 per cent of the fluid filtered in the glomerulus is absorbed by the proximal tubules. It was shown many years ago by Walker, Richards, and colleagues, for the amphibian (1) and mammalian kidneys (2), that under normal condit...

متن کامل

Sodium Flux in Necturus Proximal Tubule under Voltage Clamp

Na transport and electrical properties of Necturus renal proximal tubules were analyzed, in vivo, by a voltage clamp method which utilizes an axial electrode in the tubule lumen for passage of current and simultaneous determination of net fluid (or Na) flux by the split droplet method. When the average spontaneous transepithelial potential difference of -8 mv (lumen negative) was reduced to zer...

متن کامل

Oxidative and Hydrolytic Enzymes in the Nephron of Necturus Maculosus

The distribution of oxidative and hydrolytic enzyme activities along the nephron of Necturus maculosus Rafinesque was studied histochemically. The proximal tubule possessed all the demonstrable enzyme activities associated with the hexose-monophosphate shunt and glycolysis, but lacked detectable succinic dehydrogenase and cytochrome oxidase activities. Krebs cycle enzymes other than succinic de...

متن کامل

Change of apparent stoichiometry of proximal-tubule Na(+)-HCO3- cotransport upon experimental reversal of its orientation.

Electrogenic cotransport of Na+ with HCO3- has been reported in numerous tissues. It has always been shown with a net transfer of negative charge, but in some situations achieves net outward transport of both species with a stoichiometry of at least three HCO3- ions per Na+ ion (3:1), and in other situations achieves net inward transport of both species and has a stoichiometry of at most two HC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 70  شماره 

صفحات  -

تاریخ انتشار 1977